Problem set # 7

Only turn in the questions or problems marked with a (\clubsuit) for grading. It is however recommended that you try as many questions as you can.

- 1. Some basic finite dimensional computations (\$). Let $(B_t, t \ge 0)$ be a standard Brownian motion.
 - (a) Let $0 \le s < t$. Compute $\mathbb{P}(B_s > 0, B_t > 0)$. [Use the independence of increments.]
 - (b) For $t \ge 0$, write $X_t = \int_0^t B_s ds$ as a limit of Riemann sums and compute its distribution.
 - (c) Compute $\mathbb{E}[B_1^2 B_2 B_3]$.
- 2. Brownian bridge (\clubsuit). In this problem we wish to construct the so-called *Brownian* bridge. Let $a < b \in \mathbb{R}$, T > 0 and let $(B_t, t \ge 0)$ a standard Brownian motion. Define

$$X_t := \frac{bt + a(T-t)}{T} + B_t - \frac{t}{T}B_T$$

- (a) Show that $(X_t, 0 \leq t \leq T)$ is a Gaussian process with continuous paths and compute $\mathbb{E}[X_t]$ and $\mathbb{E}[X_tX_s]$ for $s, t \in [0, T]$.
- (b) Prove that $X = (X_t, t \in [0, T])$ is independent of B_T .
- (c) Find continuous functions $f, g: [0, T] \to \mathbb{R}$ such that $X = (X_t, t \in [0, T])$ has the same distribution as

$$\left(\frac{bt+a(T-t)}{T}+f(t)B_{g(t)}, \quad t\in[0,T]\right).$$

- 3. Brownian motion is nowhere monotone (\clubsuit). In this problem we wish to show that, almost surely, a standard Brownian motion is not monotone on any non-trivial interval [a, b] in \mathbb{R} .
 - (a) Let a < b in $\mathbb{Q}_{>0}$. Using the independence of increments and their distribution, show that

 $\mathbb{P}(B \text{ is non-decreasing on } [a, b]) = 0.$

- (b) Using the density of \mathbb{Q} in \mathbb{R} , conclude that B is almost surely non-monotone on any non-trivial interval in \mathbb{R} .
- 4. Brownian motion quadratic variation (\clubsuit). Let $(B_t, t \ge 0)$ be a standard Brownian motion and fix t > 0. For $n \ge 1$ let

$$\Delta_{n,k} = B_{t(k+1)2^{-n}} - B_{tk2^{-n}} \quad \text{for } 0 \le k \le 2^n - 1.$$

(a) Compute
$$\mathbb{E}\left[\left(t - \sum_{k=0}^{2^n-1} \Delta_{n,k}^2\right)^2\right]$$
.

(b) Use the Borel-Cantelli lemma to show that

$$\sum_{k=0}^{2^n-1} \Delta_{n,k}^2 \xrightarrow[n \to \infty]{\text{a.s}} t$$

[Hint: Use the computation from question (a) together with Chebychev's inequality]