Problem set # 6

Only turn in the questions or problems marked with a (\clubsuit) for grading. It is however recommended that you try as many questions as you can.

1. Poissonization of the multinomial (\clubsuit) .

Let $(\xi_n)_{n\geq 0}$ be a sequence of iid random variables with values in $\{1, \ldots, m\}$ and distribution

$$\mathbb{P}(\xi_n = k) = p_k, \text{ for } 1 \le k \le m.$$

Let N be a random variable independent from the sequence (ξ_n) with $Poisson(\lambda)$ distribution i.e.

$$\mathbb{P}(N=n) = e^{-\lambda} \frac{\lambda^n}{n!}, \text{ for } n \ge 0.$$

Finally let

$$X_j := \sum_{n=0}^N 1(\xi_n = j), \text{ for } 1 \le j \le m.$$

Show that the variables X_1, \ldots, X_m are mutually independent and X_j has a Poisson $(p_j \lambda)$ distribution.

2. Poisson point process (\clubsuit) .

Let (S, \mathcal{S}) be a measurable space and suppose that μ is a measure on (S, \mathcal{S}) (not necessarily a probability measure).

We assume that μ finite i.e. $0 < \mu(S) < \infty$. Our aim is to construct a process $(N(A), A \in S)$ such that the following properties hold

- (i) For any $A \in \mathcal{S}$ the variable N(A) has $Poisson(\mu(A))$ distribution.
- (ii) If A_1, \ldots, A_k are disjoint sets in \mathcal{S} , the variables $N(A_1), \ldots, N(A_k)$ are disjoint.

To do so we proceed as follows. Let (ξ_n) be a sequence of iid random variables with distribution $\frac{\mu(\cdot)}{\mu(S)}$ (i.e. the normalization of μ to a probability measure), and consider a random variable M with Poisson $(\mu(S))$ distribution independent of the sequence (ξ_n) . For $A \in \mathcal{S}$ we set

$$N(A) := \sum_{n=0}^{M} \mathbb{1}(\xi_n \in A)$$

(a) Show that this process satisfies the desired conditions (i) and (ii). [Hint: Problem (1).]

Now we remove the assumption that μ is finite. We assume instead that μ is σ -finite i.e. there exists a countable sequence of disjoint set $(A_i)_{i\geq 0}$ in S such that

$$S = \bigsqcup_{i=0}^{\infty} S_i$$
, and $\mu(S_i) < \infty$ for all $i \ge 0$.

In question (a) we have constructed Poisson processes N_i on (S_i, \mathcal{S}_i) (here the σ -algebra \mathcal{S}_i consists of the sets $S_i \cap A$ for $A \in \mathcal{S}$). We extend each N_i to a process on (S, \mathcal{S}) by setting

$$N_i(A) := N_i(A \cap S_i) \text{ for } A \in \mathcal{S}.$$

Now we define a process $(N(A), A \in \mathcal{S})$ as follows

$$N(A) = \sum_{i \ge 0} N_i(A).$$

- (b) Show that N is a Poisson process on (S, \mathcal{S}) with intensity μ i.e.
 - For any $A \in \mathcal{S}$ the variable N(A) has $Poisson(\mu(A))$ distribution.
 - If A_1, \ldots, A_k are disjoint sets in \mathcal{S} , the variables $N(A_1), \ldots, N(A_k)$ are disjoint.

The process N we just constructed is called the Poisson process on (S, \mathcal{S}) with intensity measure $\mu(\cdot)$.