# Problem set # 5

Only turn in the questions or problems marked with a  $(\clubsuit)$  for grading. It is however recommended that you try as many questions as you can.

## 1. Aggregation of states (♣).

Let  $X = (X_n)$  be a Markov chain with transition kernel P on a countable state space S. Suppose that  $S = \bigsqcup_{i \in I} S_i$  is a partition of S. For any element  $x \in S$  we denote by i(x) the unique index in I such that  $x \in S_{i(x)}$ . Now define a process  $Y = (Y_n)$  with values in I as follows

$$Y_n = i(X_n), \quad \text{for } n \ge 0.$$

Suppose that for any  $i, j \in I$ 

$$\sum_{z \in S_j} P(x, z) = \sum_{z \in S_j} P(y, z) \text{ for all } x, y \in S_i$$

and denote this quantity by Q(i, j). Show that  $Y = (Y_n)_{n \ge 0}$  is a Markov chain and determine its transition kernel.

#### 2. Simple random walk on regular trees $(\clubsuit)$ .

Let  $T_q$  be a q-regular tree. This means that  $T_q$  is an infinite tree where each vertex as exactly q-neighbors. The following figure depicts a 3-regular tree.



The tree  $T_q$  is naturally equipped with the structure of a metric space where the distance d(v, w) between two vertices v, w is the smallest number of steps one needs to take to go from v to w along the edges of  $T_q$ .

Let  $S = (S_n)$  be the simple random walk on  $T_q$ , i.e. if S is at a vertex v as some time n then the chain moves equally likely to one of the q neighbors of v.

- (a) Show that this chain is transient. [Hint: pick some vertex v to start the chain  $(S_n)$  at and study  $D_n = d(v, S_n)$ .]
- (b) Since  $S = (S_n)$  is transient one could think that  $S_n$  is moving away from its starting point v at some speed. Make this statement rigorous and determine the speed at which  $S_n$  moves away from its starting point.

# 3. A Poisson jump chain.

Let  $X = (X_n)$  be the Markov chain with state space  $\mathbb{Z}$  such with the following dynamics

- if the chain is at a state i > 0 then it moves to i 1 with probability 1.
- if the chain is at a state i < 0 then it moves to i + 1 with probability 1.
- if the chain is at 0 then it stays at 0 with probability  $e^{-1}$  or moves to  $i \in \mathbb{Z} \setminus \{0\}$  with probability  $e^{-1}/(2|i|!)$ .
- (a) Show that this chain is irreducible and aperiodic.
- (b) (\$) Determine the invariant measures of this chain. Deduce that all the states are positive recurrent.

## 4. Birth and death chains.

Let  $(r_i, p_i, q_i)_{i \in \mathbb{N}}$  be real numbers such that  $p_i + r_i + q_i = 1$  for all i = 0, 1, 2... and suppose that  $q_0 = 0$ . Consider the N-valued stochastic process  $(X_n)$  such that for  $i \in \mathbb{N}$ :

- $\mathbb{P}(X_{n+1} = i + 1 | X_n = i) = p_i,$
- $\mathbb{P}(X_{n+1} = i 1 | X_n = i) = q_i,$
- $\mathbb{P}(X_{n+1}=i|X_n=i)=r_i.$

Let  $T_c = \inf\{n \ge 0 : X_n = c\}$  for any  $c \in \mathbb{N}$ . We suppose that  $p_i, q_i > 0$  for  $i \ge 1$  and  $p_0 > 0$ .

- (a) Find a function  $\phi \colon \mathbb{N} \to \mathbb{R}$  such that  $\phi(0) = 0$ ,  $\phi(1) = 1$  and  $\phi(X_n)$  is a martingale.
- (b) ( $\clubsuit$ ) Let a < x < b be elements in  $\mathbb{N}$ . Using the martingale you previously constructed, find  $\mathbb{P}_x(T_a < T_b)$  and prove that  $\mathbb{P}_x(T_0 > T_M) \geq \frac{\phi(x)}{\phi(M)}$ .
- (c) Deduce a condition on  $p_i, q_i, r_i$  under which 0 is recurrent in this chain.