Problem set 4

Only submit the parts that are marked with a (\clubsuit) .

1. A sufficient criterion for recurrence of random walks on \mathbb{Z} .

The goal of this problem is to prove the following result:

Theorem 1. Consider the following random walk on (S_n) on \mathbb{Z} such that

$$S_{n+1} = S_n + \xi_{n+1}, \quad \text{for } n \ge 0.$$

where (ξ_i) is a sequence of i.i.d \mathbb{Z} -valued random variables with distribution μ . We suppose moreover that $\mathbb{E}[\xi_1] = 0$ and

$$\mathbb{E}[|\xi_1|] = \sum_{k \in \mathbb{Z}} |k| \mu(k) < \infty.$$

Then all the states are recurrent, moreover the chain is irreducible if and only if the group generated by $\Gamma := \{x \in \mathbb{Z} : \mu(x) > 0\}$ is all of \mathbb{Z} .

The process (S_n) is a Markov chain on the state space \mathbb{Z} . Let $P = (P(x,y))_{x,y\in\mathbb{Z}}$ be its transition kernel and denote the number of visits to a state $x\in\mathbb{Z}$ by

$$N_x := \sum_{n=0}^{\infty} 1(S_n = x).$$

We write \mathbb{P}_0 when the chain (S_n) starts from $S_0 = 0$. Finally let $U = (U(x,y))_{x,y \in \mathbb{Z}}$ be the potential kernel i.e.

$$U(x,y) := \mathbb{E}_x[N_y] = \sum_{n=0}^{\infty} P^n(x,y).$$

(a) Express P in terms of μ and show that either all states are transient or all states are recurrent. [Hint: Show that U(x,y) depends only on x-y.]

Suppose now that that 0 is transient.

- (b) () Show that $U(0,x) \leq U(x,x)$. [Use the strong Markov property to compute $\mathbb{E}_0[N_x]$ by conditioning on $(T_x < \infty)$ where $T_x := \inf\{n \geq 0 \colon S_n = x\}$.]
- (c) (\clubsuit) Deduce that there exists a constant C>0 not depending on n such that

$$\sum_{x \le |n|} U(0, x) \le Cn, \quad \text{for any } n \ge 1.$$

(d) (\clubsuit) Show that for any $\epsilon > 0$ the exists $n_0 > 0$ such that for any $n \geq n_0$

$$\mathbb{P}_0(|S_n| \le \epsilon n) > \frac{1}{2}.$$

(e) Fix an $\epsilon > 0$ and n_0 as in the previous question. Show that if $n_0 \leq m \leq n$ are integers then

$$\sum_{|x| \le \epsilon n} P^m(0, x) \ge \sum_{|x| \le \epsilon m} P^m(0, x) > \frac{1}{2}.$$

Sum over $m \in \{n_0, \ldots, n\}$ and deduce

$$\sum_{|x| \le \epsilon n} U(0, x) \ge \sum_{m=n_0}^{n} \sum_{|x| \le \epsilon n} P^m(0, x) > \frac{n - n_0}{2}.$$

- (f) (Now use question (c) to get a contradiction and deduce that 0 is recurrent and hence all states are.
- (g) (\clubsuit) Show that $H := \{x \in \mathbb{Z} : U(0,x) > 0\}$ is a subgroup of \mathbb{Z} and H is contained in the subgroup generated by Γ .
- (h) Now deduce that the chain (S_n) is irreducible if and only if $H = \mathbb{Z}$.
- 2. **Mean exit times.** Let X be a Markov chain on a countable state space S and transition kernel P. Let $A \subset S$ such that $S \setminus A$ is finite and $T_A := \{n \geq 0 : X_n \in A\}$. We assume that $\mathbb{P}_x(T_A < \infty) > 0$ for any $x \in S \setminus A$. Finally, let h_A be the following function

$$h_A(x) := \mathbb{E}_x[T_A].$$

(a) (4) Show that

$$h_A(x) = 1 + \sum_{y \in S} P(x, y) h_A(y).$$
 (1)

- (b) Argue that we actually have $\mathbb{P}_x(T_A < \infty) = 1$ for all $x \in S \setminus A$. [Hint: recall that $S \setminus A$ is finite.]
- (c) (**) Show that if a function $h: S \to \mathbb{R}$ satisfies equation (1) then $M_n := h(X_{n \wedge T_A}) + n \wedge T_A$ is a martingale.
- (d) (\clubsuit)Use the previous question to deduce that h_A is the unique function that is 0 on A and satisfies (1)
- 3. A transient Markov chain related to discrete uniform records (♣).

Consider the Markov chain $Z_n := (X_n, Y_n)$ with state space $\mathbb{Z}^2_{\geq 0}$. The chain (Z_n) moves from a state (i, j) to (i+1, j) or (i, k) for some $0 \leq k \leq j-1$, and all of these transitions are equally likely. Let $T := \inf\{n \geq 0 : Y_n = 0\}$.

Find the distribution of X_T . [Hint: Find equations that the functions $f_{i,j}(z) := \mathbb{E}_{(i,j)}[z^{X_T}]$ (for $0 \le z \le 1$) satisfy.]