Problem set # 2

1. Branching processes. Let ν be a probability distribution on $\mathbb{N} := \mathbb{Z}_{\geq 0}$ and denote by $m \in (0, \infty]$ the mean of ν . Let $(\xi_{n,k})_{n,k\geq 0}$ be an i.i.d sequence of random variables with distribution ν and $(Z_n)_{n\geq 0}$ be the stochastic process defined as follows

$$Z_0 = 1$$
, and $Z_{n+1} = \sum_{k=1}^{Z_n} \xi_{n,k}$

This is a branching process with offspring distribution ν .

- (a) Suppose ξ is a ν -distributed random variable. Show that the probability generating function $\phi(x) := \mathbb{E}[x^{\xi}]$ defined for $0 \le x \le 1$ is continuous non-decreasing and convex on [0, 1] and continuously differentiable on (0, 1).
- (b) Let $\phi_n(x) := \mathbb{E}[x^{Z_n}]$. Find an expression for ϕ_n in terms of ϕ .
- (c) Define the extinction probability of (Z_n) as $p_e := \mathbb{P}[Z_n = 0 \text{ for some } n \ge 0]$. Show that $\phi(p_e) = p_e$.
- (d) Show that if $m \leq 1$ and $\nu(\{1\}) < 1$ then $p_e = 1$.
- (e) (\clubsuit) Assume that m > 0. Show that then $W_n := Z_n/m^n$ converges almost surely to a real valued random variable W. Recover, independently of question (d), that if m < 1 then Z_n goes extinct with probability 1.
- (f) (\clubsuit) Determine all the probability distributions ν on \mathbb{N} with mean 1 such that $(Z_n)_{n\geq 0}$ is uniformly integrable. [Hint: question (d).]

2. Uniform integrability (\clubsuit) .

(a) Show that a family (X_i) is uniformly integrable if and only if

$$\lim_{\delta \to 0, \delta > 0} \sup_{\substack{i \in I \\ A \in \mathcal{F}, \ \mathbb{P}(A) < \delta}} \mathbb{E} \left[|X_i| \mathbb{1}_A \right] = 0.$$

(b) Deduce that if $(X_n)_{n\geq 0}$ is a uniformly integrable then the family $(Z_{n,\mathcal{G}} := \mathbb{E}[X_n|\mathcal{G}])_{n,\mathcal{G}}$ is uniformly integrable?

3. Wald's identity (\clubsuit) .

Let (ξ_n) be an i.i.d sequence of random variables in $L^1(\Omega, \mathcal{F}, \mathbb{P})$, $\mu := \mathbb{E}[\xi_1]$, and set $\mathcal{F}_n := \sigma(\xi_1, \ldots, x_n)$ to be the natural filtration of (ξ_n) .

- (a) Suppose that T is a stopping time such that $\mathbb{E}[T] < 0$. Show that $S_{n \wedge T} \mu(n \wedge T)$ is uniformly integrable. [Hint: Consider the random variables $Z_n := \sum_{i=1}^n |\xi_i \mu| \mathbf{1}_{T \ge i}$.]
- (b) Deduce that $S_T \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathbb{E}[S_T] = \mu \mathbb{E}[T]$

4. Lipschitz functions on [0, 1].

In this problem, we want to prove the following result

Theorem 1. Let $f : [0,1] \to \mathbb{R}$ be a Lipschitz function, i.e. there exists C > 0such that $|f(x) - f(y)| \le C|x - y|$ for any $x, y \in [0,1]$. Then there exists a bounded Borel-measurable function $g : [0,1] \to \mathbb{R}$ such that

$$f(x) = f(0) + \int_0^x g(u)du.$$

To show this result we can proceed as follows. Let U be [0, 1)-valued random variable with the uniform distribution and set

$$X_n := 2^{-n} \lfloor 2^n U \rfloor$$
 and $Z_n := 2^n (f(X_n + 2^{-n}) - f(X_n))$

and $\mathcal{F}_n := \sigma(X_0, \ldots, X_n)$ the natural filtration of $(X_n)_{n \ge 0}$.

- (a) Check that $\sigma(X) = \mathcal{F}_{\infty} := \sigma(X_0, X_1, \dots)$ and that $\mathcal{F}_n = \sigma(X_n)$.
- (b) Show that (Z_n) is a bounded martingale with respect to (\mathcal{F}_n)
- (c) Show that there exists a bounded Borel-measurable function $g: [0,1] \to \mathbb{R}$ such that $Z_n \to g(X)$ a.s. as $n \to \infty$.
- (d) Check that a.s. for any $n \ge 0$:

$$Z_n = 2^n \int_{X_n}^{X_n + 2^{-n}} g(u) du.$$

(e) Conclude that for any $x \in [0, 1]$

$$f(x) = f(0) + \int_0^x g(u) du.$$

5. Distribution of a martingale limit.

Let $a \in (0, 1)$ and consider the stochastic process $(X_n)_{n\geq 0}$ with values in [0, 1] such that $X_0 = a$ and for any $n \geq 0$

$$\mathbb{P}\left(X_{n+1} = \frac{X_n}{2}|\mathcal{F}_n\right) = 1 - X_n, \quad \text{qnd} \quad \mathbb{P}\left(X_{n+1} = \frac{1 + X_n}{2}|\mathcal{F}_n\right) = X_n,$$

where $\mathcal{F}_n := \sigma(X_0, \ldots, X_n).$

- (a) Show that X_n converges a.s. to a random variable $X \in [0, 1]$.
- (b) Prove that $\mathbb{E}[(X_{n+1} X_n))^2] = \frac{1}{4}\mathbb{E}(X_n(1 X_n))$
- (c) (\clubsuit) Find the distribution of Z. [Hint: You may want to send n to ∞ in the last question and compute the moments of Z using L^p convergence of martingales. Running a simulation is also not a bad idea.]