Mal40B, Y. El Maazouz, Winter 2025

Problem set # 2

1. Branching processes. Let v be a probability distribution on N := Z>, and denote
by m € (0, 00] the mean of v. Let (&,x)ni>0 be an i.i.d sequence of random variables
with distribution v and (Z,,),>0 be the stochastic process defined as follows

Zo=1, and Zy =Y Lok
k=1

This is a branching process with offspring distribution v.

(a) Suppose ¢ is a v-distributed random variable. Show that the probability gener-
ating function ¢(r) := E[2%] defined for 0 < x < 1 is continuous non-decreasing
and convex on [0, 1] and continuously differentiable on (0, 1).

(b) Let ¢,(x) := E[z?"]. Find an expression for ¢, in terms of ¢.

(¢) Define the extinction probability of (Z,) as p. := P[Z,, = 0 for some n > 0]. Show
that ¢(pe) = pe.

(d) Show that if m <1 and v({1}) < 1 then p. = 1.

(e) (&) Assume that m > 0. Show that then W,, := Z,,/m™ converges almost surely
to a real valued random variable W. Recover, independently of question (d), that
if m < 1 then Z,, goes extinct with probability 1.

(f) (&%) Determine all the probability distributions v on N with mean 1 such that
(Zy)n>0 is uniformly integrable. [Hint: question (d).]

2. Uniform integrability (é).
(a) Show that a family (X;) is uniformly integrable if and only if

li El|X;|1a| =0.
L P A
AeF, P(A)<$

(b) Deduce that if (X,,)n>0 is a uniformly integrable then the family (7, g := E[X,,|G])ng
is uniformly integrable?

3. Wald’s identity (é).

Let (£,) be an i.i.d sequence of random variables in L'(Q, F,P), u := E[¢], and set
Fn:=0(&, ..., x,) to be the natural filtration of (&,).

(a) Suppose that T is a stopping time such that E[T] < 0. Show that S, r —pu(nAT)
is uniformly integrable. [Hint: Consider the random variables Z,, := > | [& —

pllr>i]
(b) Deduce that St € L'(Q, F,P) and E[Sr] = uE[T]
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4. Lipschitz functions on [0, 1].

In this problem, we want to prove the following result

Theorem 1. Let f : [0,1] — R be a Lipschitz function, i.e. there exists C > 0
such that |f(z) — f(y)| < Clz —y| for any z,y € [0,1]. Then there exists a bounded
Borel-measurable function g : [0,1] — R such that

f(e) = 1(0) + / " g(u)du.

To show this result we can proceed as follows. Let U be [0, 1)-valued random varialbe
with the uniform distribution and set

X, :=27"2"U] and Z,:=2"(f(X,+27") — f(X.)),
and F,, := 0(Xo, ..., X,) the natural filtration of (X,,),>0.

(a) Check that o(X) = F := (X0, X1,...) and that F,, = 0(X,,).
(b) Show that (Z,) is a bounded martingale with respect to (F,)

(c¢) Show that there exists a bounded Borel-measurable function ¢ : [0, 1] — R such
that Z, — g(X) a.s. as n — oc.

(d) Check that a.s. for any n > 0:

(e) Conclude that for any x € [0, 1]

f(x) = £(0) + / " g(u)du.

5. Distribution of a martingale limit.

Let a € (0,1) and consider the stochastic process (X, ),>0 with values in [0, 1] such
that Xy = a and for any n > 0

1+ X,

X
P (Xn+1 = 7”‘;”> =1- Xn, qnd P (Xn+1 = T|fn) = an

where F,, := o(Xo, ..., Xp).

(a) Show that X,, converges a.s. to a random variable X € [0, 1].
(b) Prove that E[(X,1 — X,,))%] = 1E(X,(1 — X,,))
(¢) (&) Find the distribution of Z. [Hint: You may want to send n to oo in the last

question and compute the moments of Z using LP convergence of martingales.
Running a simulation is also not a bad idea.]



