
Ma140B, Y. El Maazouz, Winter 2025

Problem set # 2

1. Branching processes. Let ν be a probability distribution on N := Z≥0 and denote
by m ∈ (0,∞] the mean of ν. Let (ξn,k)n,k≥0 be an i.i.d sequence of random variables
with distribution ν and (Zn)n≥0 be the stochastic process defined as follows

Z0 = 1, and Zn+1 =
Zn∑
k=1

ξn,k

This is a branching process with offspring distribution ν.

(a) Suppose ξ is a ν-distributed random variable. Show that the probability gener-
ating function ϕ(x) := E[xξ] defined for 0 ≤ x ≤ 1 is continuous non-decreasing
and convex on [0, 1] and continuously differentiable on (0, 1).

(b) Let ϕn(x) := E[xZn ]. Find an expression for ϕn in terms of ϕ.

(c) Define the extinction probability of (Zn) as pe := P[Zn = 0 for some n ≥ 0]. Show
that ϕ(pe) = pe.

(d) Show that if m ≤ 1 and ν({1}) < 1 then pe = 1.

(e) (♣) Assume that m > 0. Show that then Wn := Zn/m
n converges almost surely

to a real valued random variable W . Recover, independently of question (d), that
if m < 1 then Zn goes extinct with probability 1.

(f) (♣) Determine all the probability distributions ν on N with mean 1 such that
(Zn)n≥0 is uniformly integrable. [Hint: question (d).]

2. Uniform integrability (♣).

(a) Show that a family (Xi) is uniformly integrable if and only if

lim
δ→0,δ>0

sup
i∈I

A∈F , P(A)<δ

E
[
|Xi|1A

]
= 0.

(b) Deduce that if (Xn)n≥0 is a uniformly integrable then the family (Zn,G := E[Xn|G])n,G
is uniformly integrable?

3. Wald’s identity (♣).

Let (ξn) be an i.i.d sequence of random variables in L1(Ω,F ,P), µ := E[ξ1], and set
Fn := σ(ξ1, . . . , xn) to be the natural filtration of (ξn).

(a) Suppose that T is a stopping time such that E[T ] < 0. Show that Sn∧T −µ(n∧T )
is uniformly integrable. [Hint: Consider the random variables Zn :=

∑n
i=1 |ξi −

µ|1T≥i.]

(b) Deduce that ST ∈ L1(Ω,F ,P) and E[ST ] = µE[T ]
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4. Lipschitz functions on [0, 1].

In this problem, we want to prove the following result

Theorem 1. Let f : [0, 1] → R be a Lipschitz function, i.e. there exists C > 0
such that |f(x) − f(y)| ≤ C|x − y| for any x, y ∈ [0, 1]. Then there exists a bounded
Borel-measurable function g : [0, 1] → R such that

f(x) = f(0) +

∫ x

0

g(u)du.

To show this result we can proceed as follows. Let U be [0, 1)-valued random varialbe
with the uniform distribution and set

Xn := 2−n⌊2nU⌋ and Zn := 2n(f(Xn + 2−n)− f(Xn)),

and Fn := σ(X0, . . . , Xn) the natural filtration of (Xn)n≥0.

(a) Check that σ(X) = F∞ := σ(X0, X1, . . . ) and that Fn = σ(Xn).

(b) Show that (Zn) is a bounded martingale with respect to (Fn)

(c) Show that there exists a bounded Borel-measurable function g : [0, 1] → R such
that Zn → g(X) a.s. as n → ∞.

(d) Check that a.s. for any n ≥ 0:

Zn = 2n
∫ Xn+2−n

Xn

g(u)du.

(e) Conclude that for any x ∈ [0, 1]

f(x) = f(0) +

∫ x

0

g(u)du.

5. Distribution of a martingale limit.

Let a ∈ (0, 1) and consider the stochastic process (Xn)n≥0 with values in [0, 1] such
that X0 = a and for any n ≥ 0

P
(
Xn+1 =

Xn

2
|Fn

)
= 1−Xn, qnd P

(
Xn+1 =

1 +Xn

2
|Fn

)
= Xn,

where Fn := σ(X0, . . . , Xn).

(a) Show that Xn converges a.s. to a random variable X ∈ [0, 1].

(b) Prove that E[(Xn+1 −Xn))
2] = 1

4
E(Xn(1−Xn))

(c) (♣) Find the distribution of Z. [Hint: You may want to send n to ∞ in the last
question and compute the moments of Z using Lp convergence of martingales.
Running a simulation is also not a bad idea.]
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