Problem set # 1

Only turn in the questions or problems with a (\clubsuit) next to them for grading. It is however recommended that you try as many questions as you can.

1. Conditional expectation **♣**.

Suppose that $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G} \subset \mathcal{F}$. Show that if $Z = \mathbb{E}[X|\mathcal{G}]$ and X have the same law then Z = X a.s.

[Hints: you may want to consider the case where X is in $L^2(\Omega, \mathcal{F}, \mathbb{P})$ first. Another approach is:

- (a) Start by checking that $\mathbb{E}[X(1_{X>0} 1_{Z>0})] = 0.$
- (b) Notice $1_{X>0} 1_{Z>0} = 1_{X>0,Z\leq 0} 1_{X\leq 0,Z>0}$
- (c) Then deduce that $\mathbb{P}(X > 0, Z \le 0) = \mathbb{P}(X < 0, Z > 0) = 0.$
- (d) Apply what you've done so far to X + c and deduce $\mathbb{P}(X > c, Z \le c) = \mathbb{P}(X < c, Z > c) = 0$ for any $c \in \mathbb{R}$.
- (e) Conclude the desired result.

]

2. Martingales and stopping time.

Given an integrable stochastic process X_n adapted to a filtration \mathcal{F}_n , show that (X_n, \mathcal{F}_n) is a martingale if and only if $\mathbb{E}[X_n | \mathcal{F}_{\tau}] = X_{\tau}$ for any non-random, finite n and all \mathcal{F}_n stopping times $\tau \leq n$ where $\mathcal{F}_{\tau} := \{A \in \sigma(\cup \mathcal{F}_n) : A \cap \{\tau \leq i\} \in \mathcal{F}_i \forall i\}$. As a part of the exercise prove that \mathcal{F}_{τ} is a sigma-algebra for every stopping time τ .

3. Almost sure convergence of martingales.

(a) Let (X_n) be a submartingale such that $\sup X_n < \infty$ a.s. and let $\xi_n := X_n - X_{n-1}$ and suppose that $\mathbb{E}(\sup \xi_n^+) < \infty$. Show that X_n converges a.s. [Hint: For an integer $K \ge 1$, consider the stopping time $T_K := \inf\{n \ge 0 \colon X_n > 1\}$

K and use the almost sure convergence theorem on $X_{n \wedge T_K}$. Then note that on the event $(T_K = \infty)$ we have $X_{n \wedge T_K} = X_n$. Then show that $\mathbb{P}(\bigcup_{K>0}(T_K = \infty)) = 1$.]

(b) Let X_n, Y_n be nonnegative, integrable and \mathcal{F}_n -adapted. Suppose that

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] \le (1+Y_n)X_n$$
 and $\sum_n Y_n < \infty$ a.s.

Prove that X_n converges a.s.

(c) \clubsuit Suppose now that

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] \le Y_n + X_n \text{ and } \sum_n Y_n < \infty \text{ a.s.}$$

Prove again that X_n converges a.s.

[Hint: Construct a supermartingale Z_n from X_n and the Y_i 's. Then, as in question (a), stop this martingale at a suitable stopping time to make it bounded from below then apply the almost sure convergence theorem.]

4. Probability of bankrupcy in finite time.

Let x > 0 and (X_n) i.i.d random variables with $\mathbb{E}[e^{\lambda X_k}] < \infty$ for any $\lambda > 0$. Let c > 0 and consider the process

$$S_0 = x$$
 and $S_{n+1} = S_n + (c - X_{n+1})$ for $n \ge 0$.

Finally let $T = \inf\{n \ge 0 : S_n < 0\}.$

- (a) Check that $\mathbb{P}(\tau < \infty) = 1$ when $\mathbb{E}[X] > c$.
- (b) \clubsuit From now on suppose that $\mathbb{E}X_1 < c$ and $\mathbb{P}(X_1 > c) > 0$. Show that there exists a unique $\lambda_0 > 0$ such that $V_n := e^{-\lambda_0 S_n + \lambda_0 x}$ is a martingale.
- (c) \clubsuit Use V_n to show that $\mathbb{P}(T < \infty) \leq e^{-\lambda_0 x}$.

5. Kolmogorov inequality.

Let x > 0 (X_n) be independent, centered and square integrable random variables. Set $\sigma_n^2 = \operatorname{Var} X_n$ and $S_n = X_1 + \cdots + X_n$.

(a) Show that for any x > 0 and integer $n \ge 1$ we have

$$\mathbb{P}\left(\max_{1\le k\le n} |S_k| \ge x\right) \le \operatorname{Var}(S_n)/x^2.$$

(b) (\clubsuit) Now suppose that there exists c > 0 such that $|X_n| \le c$ a.s for any n. Check that $S_n^2 - \operatorname{Var}(S_n)$ is a martingale and deduce that

$$\mathbb{P}\left(\max_{1 \le k \le n} |S_k| \le x\right) \le (x+c)^2 / \operatorname{Var}(S_n), \text{ for all } x > 0 \text{ and } n \in \mathbb{Z}_{>0}.$$

6. Kolmogorov three series theorem.

Let ξ_n be a sequence of independent real random variables. For c > 0 we write $\xi_n^{(c)} = \xi_n 1(|\xi_n| \le c)$. The aim of this problem is to show that the following are equivalent

- (i) $\sum_{k=0}^{n} \xi_k$ converges almost surely in \mathbb{R} .
- (ii) For any c > 0 the two series $\sum_{n \ge 0} \mathbb{P}(|\xi_n| > c)$ and $\sum_{n \ge 0} \operatorname{Var}(\xi_n^{(c)})$ are summable and $\sum_{k=1}^n \mathbb{E}[\xi_n^{(c)}]$ converges.

To do so proceed as follows:

(a) Assume (ii). Show that $S_n = \sum_{k=0}^n \xi_k^{(c)} - \mathbb{E}[\xi_k^{(c)}]$ is a martingale for a simple filtration to be chosen. Moreover

$$\sup_{n\geq 0} (\mathbb{E}S_n^2) < \infty.$$

Using the L^2 -convergence theorem deduce that S_n converges almost surely and in L^2 .

- (b) ♣ Use the previous question to show that (ii) implies (i).From now on suppose (i).
- (c) Using the Borel-Cantelli lemma show that

$$\sum_{n \ge 0} \mathbb{P}(|\xi_n| > c) < \infty \quad \text{and} \; \sum_{k=1}^n \xi_k^{(c)} \text{ converges a.s. in } \mathbb{R}.$$

- (d) Suppose given two independent sequences (χ_n) and (χ_n^*) of the same distribution as $(\xi_n^{(c)})$ and set $Z_n = \chi_n - \chi_n^*$. Show that $\sum_{k=1}^n Z_k$ converges a.s in \mathbb{R} .
- (e) (\clubsuit) Check that $|Z_n| \leq 2c$, $\mathbb{E}Z_n = 0$ and $\operatorname{Var}(Z_n) = 2\operatorname{Var}(\xi_n^{(c)})$. Set $S_n^* := Z_1 + \cdots + Z_n$ and check that

$$\operatorname{Var}(S_n^*) = 2\sum_{k=1}^n \operatorname{Var}(\xi_k^{(c)}),$$

and use the previous problem to deduce that there exist $\eta, x_0 > 0$ such that for any $n \ge 1$

$$\eta < \mathbb{P}\left(\max_{1 \le k \le n} |S_k^*| \le x_0\right) \le \frac{(x_0 + 2c)^2}{\operatorname{Var}(S_n^*)}.$$

Deduce that $\sum_{n\geq 1} \operatorname{Var}(\xi_n^{(c)}) < \infty$.

(f) (\clubsuit) Recall that $S_n = \sum_{k=1}^n \xi_k^{(c)} - \mathbb{E}[\xi_k^{(c)}]$. Check that S_n is a martingale and $\sup_n \mathbb{E}[S_n^2] < \infty$ so S_n converges a.s. Show that this implies that $\sum_{n \ge 1} \mathbb{E}[\xi_n^{(c)}]$ is a convergent series.

This finishes the proof that (i) implies (ii).