
Séminaire Lotharingien de Combinatoire XX (2025) Proceedings of the 37th Conference on Formal Power
Article #YY, 12 pp. Series and Algebraic Combinatorics (Sapporo)
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Abstract. The Plücker positive region OGr+(k, 2k) of the orthogonal Grassmannian
emerged as the positive geometry behind the ABJM scattering amplitudes. In this
paper we initiate the study of the positive orthogonal Grassmannian OGr+(k, n) for
general values of k, n. We determine the boundary structure of the quadric OGr+(1, n)
in Pn−1

+ and show that it is a positive geometry. We show that OGr+(k, 2k + 1) is
isomorphic to OGr+(k+ 1, 2k+ 2) and connect its combinatorial structure to matchings
on [2k + 2]. Finally, we show that in the case n > 2k + 1, the positroid cells of Gr+(k, n)
no longer suffice to induce a CW cell decomposition of OGr+(k, n).
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1 Introduction

Let n ≥ k be positive integers and denote by Gr(k, n) the Grassmannian of k-dimensional
subspaces of Cn. The positive Grassmannian Gr+(k, n) is the semialgebraic set in Gr(k, n)
where all Plücker coordinates are real and nonnegative. The matroid stratification of
the Grassmannian [9] induces a natural decomposition of Gr+(k, n) into the so-called
positroid cells, see [12].

After Postnikov’s landmark paper [12], the positive Grassmannian became a rich
object of research in algebraic combinatorics [13, 7, 14]. Its study accelerated, in recent
years, largely due to its unexpected and profound connection to Physics, in particular
shallow water waves [11, 1] and scattering amplitudes in quantum field theory [4, 3, 2].
The object of study in this article is the positive orthogonal Grassmannian OGrω

+(k, n).

Definition 1.1. Let ω : Rn × Rn → R be a non-degenerate symmetric bilinear form.
We denote by OGrω(k, n) the algebraic variety of isotropic k-dimensional subspaces V
of Cn with respect to ω i.e. ω(x, y) = 0 for any x, y ∈ V. The positive orthogonal
Grassmannian OGrω

+(k, n) is the semi-algebraic subset of OGrω(k, n) where the Plücker
coordinates are all real and have the same sign.
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In the special case n = 2k and ω(x, y) = ∑2k
i=1(−1)i−1xiyi, this object was first studied

in the context of ABJM scattering amplitudes [10] and later connected to the Ising model
in [8]. In this paper we initiate the study of OGrω

+(k, n) for general values of k, n with
respect to the quadratic form

ω0(x, y) = x1y1 − x2y2 + · · ·+ (−1)n−1xnyn. (1.1)

The choice of the quadratic form ω is extremely important. For certain quadratic forms
the variety OGrω(k, n) has no real points, or its positive part is not full dimensional.

This article is organized as follows. In Section 2 we collect some facts on the geometry
of the orthogonal Grassmannian OGrω(k, n). In particular we determine the ideal of
quadrics that cut out OGr(k, n) in P(∧kCn), and determine a Gröbner basis for this
ideal. In Section 3 we investigate OGrω0

+ (1, n) with respect to the alternating form (1.1).
Namely, we describe its face structure and show that it is a positive geometry. Section 4 is
devoted to OGrω0

+ (k, 2k + 1). In this section we show that OGrω0
+ (k, 2k + 1) is isomorphic

to OGrω0
+ (k + 1, 2k + 2) and we relate the face structure of OGrω0

+ (k, 2k + 1) to matchings
on [2k + 2]. In Section 5 we initiate the study of OGrω0

+ (k, n) starting with the case k = 2.
Already in this specific case, we show that the positroid cell decomposition of Gr+(2, n)
is no longer sufficient to induce a CW cell decomposition of OGrω0

+ (2, n).

2 Commutative algebra and geometry of OGr(k, n)

In this section we collect some facts on the algebraic variety OGrω(k, n) over C. Since
all non-degenerate symmetric bilinear forms over C are equivalent to the standard inner
product (·, ·), the varieties OGrω(k, n) for different ω are isomorphic. So, in this section
we may assume that ω is (·, ·), and we suppress ω and write OGr(k, n). Recall that the
Grassmannian Gr(k, n) comes with (n

k) Plücker coordinates, which we denote by pI for
any subset I = {i1 < i2 < · · · < ik} of [n].

Theorem 2.1. The orthogonal Grassmannian OGr(k, n) is cut out in P(∧kCn) by the Plücker
relations and the following 1

2(
n

k−1)
(
( n

k−1) + 1
)

equations:

n

∑
ℓ=1

ε(Iℓ)ε(Jℓ) pIℓpJℓ = 0, for I, J ∈
(

[n]
k − 1

)
. (2.1)

where ϵ(Iℓ) = (−1)|{i∈I : i>ℓ}| denotes the sign of the permutation that sorts Iℓ.

Remark 2.2. In the case of the bilinear form (1.1), the equations (2.1) become:

n

∑
ℓ=1

(−1)ℓ−1ϵ(Iℓ)ϵ(Jℓ)pIℓpJℓ = 0, for I, J ∈
(

[n]
k − 1

)
. (2.2)
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Proposition 2.3. The variety OGr(k, n) is empty if n < 2k. When n = 2k it splits into two
irreducible connected components, and it is irreducible when n > 2k. Moreover we have:

dim(OGr(k, n)) = k(n − k)−
(

k + 1
2

)
for n ≥ 2k.

Following [6], let Yk,n denote Young’s lattice. This is a poset whose elements are subsets
of size k in [n] and the order relation in Yk,n is:

⟨i1 < · · · < ik⟩ ≤ ⟨j1 < · · · < jk⟩ if i1 ≤ j1, i2 ≤ j2, . . . , ik−1 ≤ jk−1 and ik ≤ jk.

We denote by Ỹk,n another copy of Young’s lattice. As a set Ỹk,n = ( [n]
n−k) and the order

relation is given by:

[i′1 < · · · < i′n−k] ≤ [j′1 < · · · < j′n−k] if i′1 ≥ j′1, . . . , i′n−k ≥ j′n−k.

Finally we denote by Pk,n the poset which, as a set, is the disjoint union of Yk,n and Ỹk,n.
All order relations in Yk,n and Ỹk,n remain order relations in Pk,n and in addition to these
relations we add (2k

k ) covering relations:

[j′1 < · · · < j′n−k] < ⟨i1 < · · · < ik⟩

whenever {1, 2, 3, . . . , 2k} = {i1, . . . , ik}⊔{j1, . . . , jk} is a partition where the set {j1, . . . , jk}
is the complement [n] \ {j′1, . . . , j′n−k}. See Figure 1 for an example.

⟨56⟩

⟨46⟩

⟨36⟩

⟨26⟩

⟨16⟩

⟨45⟩

⟨35⟩

⟨25⟩

⟨15⟩

⟨34⟩

⟨24⟩

⟨14⟩ ⟨23⟩

⟨13⟩

⟨12⟩

[1234]

[1235]

[1245]

[1345]

[2345]

[1236]

[1246]

[1346]

[2346]

[1256]

[1356]

[2356][1456]

[2456]

[3456]

Figure 1: The poset P2,6 glued from Y2,6 and Ỹ2,6 using the covering relations in red.
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An incomparable pair
(
⟨i1, . . . , ik⟩, ⟨j1, . . . , jk⟩

)
or
(
⟨i1, . . . , ik⟩, [j′1, . . . , j′n−k]

)
in the poset

Pk,n yields a non-semistandard Young tableau µ of shape (k, k) or λ of shape (n − k, k):

µ =

[
j1 · · · jℓ−1 jℓ jℓ+1 · · · jk
i1 · · · iℓ−1 iℓ iℓ+1 · · · ik

]
and λ =

[
j′1 · · · j′ℓ−1 j′ℓ j′ℓ+1 · · · j′k · · · j′n−k
i1 · · · iℓ−1 iℓ iℓ+1 · · · ik

]
.

(2.3)
The tableau µ or λ being non-semistandard means that there exists ℓ in [k] such that:

i1 < · · · < iℓ < jℓ < · · · < jk or i1 < · · · < iℓ < j′ℓ < · · · < j′n−k. (2.4)

We pick ℓ to be the smallest index with this property. The strictly increasing sequences
of integers in (2.4) are highlighted in bold in (2.3). Now consider the permutations
π of the sequence i1 < · · · < iℓ < jℓ < · · · < jk which make the first ℓ entries and
the last k − ℓ+ 1 entries separately increasing, and similarly, the permutations σ of the
sequence i1 < · · · < iℓ < j′ℓ < · · · < j′n−k which make the first ℓ entries and the last
n − k − ℓ+ 1 entries separately increasing. Such permutations permute the bold entries
in the tableaux µ and λ in (2.3) and yield

π(µ) =

[
j1 · · · jℓ−1 π(jℓ) π(jℓ+1) · · · π(jk)

π(i1) · · · π(iℓ−1) π(iℓ) iℓ+1 · · · ik

]
,

σ(λ) =

[
j′1 · · · j′ℓ−1 π(j′ℓ) π(j′ℓ+1) · · · π(j′k) · · · π(j′n−k)

π(i1) · · · π(iℓ−1) π(iℓ) iℓ+1 · · · ik

]
.

Summing over these permutations, the tableaux µ and λ yield quadrics

fµ := ∑
π

sign(π) ⟨π(i1), . . . , π(iℓ), iℓ+1, . . . ik⟩ ⟨j1, . . . , jℓ−1, π(jℓ), . . . , π(jk)⟩

fλ := ∑
π

sign(π) ⟨π(i1), . . . , π(iℓ), iℓ+1, . . . ik⟩ [j′1, . . . , j′ℓ−1, π(j′ℓ), . . . , π(j′k)]
. (2.5)

Here, whenever J′ = {j′1 < · · · < j′n−k} and [n] \ J′ = { j̄1 < · · · < j̄k} we set

[j′1, . . . , j′n−k] := (−1)∑n−k
r=1 j′r⟨ j̄1, . . . , j̄k⟩.

Theorem 2.4. The quadrics in (2.5) form a Gröbner basis for the ideal Ik,n in C[pI ] generated by
the Plücker relations and the quadratic equations in (2.1) with respect to any monomial ordering
given by a linear extension of the poset Pk,n.

Proposition 2.5. Let n > 2k, m := ⌊n/2⌋, and set D := k(n − k) − (k+1
2 ). The degree of
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OGr(k, n) in the Plücker embedding is

D! ·

 ∏
1≤i≤k
k<j≤m

1
(2m − i − j)(j − i)


(

∏
1≤i<j≤k

2
2m − i − j

)
, if n = 2m,

D! ·
(

∏
1≤i≤k

2
2m − 2i + 1

) ∏
1≤i≤k
k<j≤m

1
(2m − i − j)(j − i)


(

∏
1≤i<j≤k

2
2m − i − j + 1

)
, if n = 2m + 1.

(2.6)

Theorem 2.6. When n > 2k, the ideal Ik,n in C
[

pI : I ∈ ([n]k )
]

generated by the Plücker rela-
tions and the quadrics in (2.1) is the prime ideal of OGr(k, n). In particular, the degree of Ik,n is
given by (2.6).

Remark 2.7. The ideal Ik,2k is clearly not prime since OGr(k, 2k) has two irreducible
connected components and we know that Ik,2k cuts out OGr(k, 2k) in P(2k

k )−1. Moreover,
if ω = ω0 is the sign alternating quadratic form in (1.1), then for any p ∈ Gr(k, 2k) we
have p ∈ OGrω0(k, 2k) if and only if

pI = pIc for all I ∈
(
[2k]

k

)
or pI = −pIc for all I ∈

(
[2k]

k

)
. (2.7)

We define the standard component of OGrω0(k, 2k) to be the connected component
where pI = pIc for all I ∈ ([2k]

k ). The semialgebraic set in the standard component where
all Plücker coordinates are real and have the same sign is denoted by OGrω0

+ (k, 2k).

3 The positive orthogonal Grassmannian OGr+(1, n)

In this section we study the positive geometry, in the sense of [2], of OGr(1, n) with
the quadratic form ω0 given by (1.1). From now on, unless specifically mentioned, we
always work with ω0. We denote by (p, q) its signature where p = ⌈n

2 ⌉ and q = ⌊n
2 ⌋.

We think of the elements of [n] as vertices of a regular n-gon ordered clockwise from
1 to n. For each pair of non-empty subsets A ⊂ [n] ∩ (2Z + 1) and B ⊂ [n] ∩ 2Z, there
exists a unique cycle σ(A, B) in the symmetric group Sn such that σ(A, B) has exactly one
excedance and the support of σ(A, B) is A ⊔ B. The set of such permutations1 σ(A, B) is
denoted S1,n. The set S1,n is endowed with a partial order given by:

σ(C, D) ⪯ σ(A, B) ⇐⇒ C ⊆ A and D ⊆ B.

For σ(A, B) ∈ S1,n, we denote by Πσ(A,B) the subset of Pn−1
+ where xi = 0 if and only if

i is a fixed point of σ(A, B) i.e. i ̸∈ A ⊔ B. Here, Pn−1
+ is simply Gr+(1, n).

1These are decorated permutations with all fixed points having a “+" decoration.
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Theorem 3.1. The positive orthogonal Grassmannian OGr+(1, n) is combinatorially isomorphic
to the product of simplices ∆p−1 × ∆q−1. More precisely, the following hold:

1. OGr+(1, n) =
⊔

σ∈S1,n

OGr+(1, n) ∩ Πσ.

2. OGr+(1, n) ∩ Πσ =
⊔

τ⪯σ
OGr+(1, n) ∩ Πτ.

3. If A = {i1 < · · · < ir} and B = {j1 < · · · < jm}, σ = σ(A, B) the cell OGr+(1, n) ∩
Πσ(A,B) can be parameterized as follows. For each t1, . . . , tr−1 and s1, . . . , sm−1 in R>0 we
get a point x ∈ OGr+(1, n) ∩ Πσ(A,B) by setting xi = 0 whenever i ̸∈ (A ∪ B) and:

xi1 =
et1 − e−t1

et1 + e−t1
, xi2 =

2
et1 + e−t1

et2 − e−t2

et2 + e−t2
, . . . , xir−1 =

2
etr−1 + e−tr−1

r−1

∏
ℓ=1

etℓ − etℓ

etℓ + e−tℓ
,

xj1 =
es1 − e−s1

es1 + e−s1
, xj2 =

2
es1 + e−s1

es2 − e−s2

es2 + e−s2
, . . . , xjm−1 =

2
esm−1 + e−sm−1

m−1

∏
ℓ=1

esℓ − esℓ

esℓ + e−sℓ
.

(3.1)

Example 3.2. The orthogonal Grassmannian OGr+(1, 5) has the same combinatorial
structure as ∆1 × ∆2. The poset of the boundaries of OGr+(1, n) is depicted in Figure 2.
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Figure 2: The Hasse diagram of the poset structure on S1,5.

The next theorem shows that OGr+(1, n) is a positive geometry. For convenience, we
permute2 the coordinates of Pn−1 and write:

OGr+(1, n) =
{
(y1 : · · · : yn) ∈ Pn−1

+ : y2
1 + · · ·+ y2

p − y2
p+1 − · · · − y2

n = 0
}

.
2Here, since k = 1, permuting the coordinates does not change the signs of the "minors".
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Theorem 3.3. The semi-algebraic set OGr+(1, n) is a positive geometry. Its canonical form is:

Ω = (1 + u2
2,1 + u2

3,1 + · · ·+ u2
p,1)

du2,1 ∧ du3,1 ∧ · · · ∧ dun−1,1

u2,1 u3,1 · · · un−1,1 u2
n,1

,

where ui,j = xi/x1 in the projective coordinates (x1 : · · · : xn) of Pn−1.

4 The positive orthogonal Grassmannian OGr+(k, 2k + 1)

We recall that we are working with the sign alternating form (1.1). The positroid cells
of Gr+(k, 2k) induce a cell decomposition on the nonnegative orthogonal Grassmannian
OGr+(k, 2k), and the cells of this decomposition are indexed by fixed-point-free involu-
tions of [2k]. The face structure of OGr+(k, 2k) and the parametrization of its cells are
studied in detail in [8, Section 5].

One of the reasons positroid cells induce a cell decomposition of the nonnegative
orthogonal Grassmannian OGr+(k, 2k) is that, per (2.7), the latter is obtained by slicing
Gr+(k, 2k) by a linear space. In general, one can obtain OGr+(k, n) by slicing the positive
flag variety with a linear space. For a subspace V in Cn of dimension k, we denote by
V⊥ its orthogonal complement with respect to the form (1.1).

Lemma 1. The Hodge star map Gr(k, n) → Gr(n − k, n), V → V⊥ is given in Plücker coordi-
nates by:

qJ = pJc , for any J ∈
(

[n]
n − k

)
,

where pI and qJ are Plücker coordinates in Gr(k, n) and Gr(n − k, n) respectively. In particular
it restricts to an isomorphism of positive geometries between Gr+(k, n) and Gr+(n − k, n).

Let F (k, n) be the 2-step flag variety of partial flags V ⊂ W ⊂ Cn where dim(V) = k
and dim(W) = n − k. The nonnegative part F+(k, n) of F (k, n) is the semi-algebraic set
of points (V, W) ∈ Gr+(k, n)× Gr+(n − k, n) such that (V, W) ∈ F (k, n). We denote by
D the diagonal subset of P(n

k) × P( n
n−k) i.e.

D :=
{
(p, q) : pI = qIc for any I ∈

(
[n]
k

)}
.

Proposition 4.1. The positive orthogonal Grassmannian OGr+(k, n) is the intersection of the
positive flag variety F+(k, n) with D i.e.:

OGr+(k, n) = F+(k, n) ∩D. (4.1)



8 Y. El Maazouz and Y. Mandelshtam

This motivates the choice of the sign alternating form (1.1) in [8, 10]. However, unlike
F+(k, 2k) ∼= Gr+(k, 2k), the nonnegative region F+(k, n) is not well understood3 for
general k. This motivates the following question:

Problem 4.2. Study the face structure of F+(k, n) and find a parametrization of its cells.

Proposition 4.3. The homogeneous coordinate rings of the 2-step flag variety F (k, 2k + 1) and
the Grassmannian Gr(k + 1, 2k + 2) are isomorphic.

Theorem 4.4. The orthogonal Grassmannians OGr(k, 2k + 1) and OGr(k + 1, 2k + 2) can be
identified through a linear isomorphism (qJ) 7→ pI = qI∪{2k+2}. This isomorphism restricts to
an isomorphism of the positive regions OGr+(k, 2k + 1) and OGr+(k, 2k + 1).

Remark 4.5. The equations that cut out OGr(k, 2k + 1) in Gr(k, 2k + 1) are all quadrics.
It is remarkable that we can still describe the face structure of OGr+(k, 2k + 1) from our
understanding of the face structure of OGr+(k + 1, 2k + 2).

Example 4.6 (OGr+(2, 5)). The orthogonal Grassmannian OGr+(2, 5) is isomorphic to
OGr+(3, 6). The Hasse diagram of the face poset of the latter is in [8, Figure 7]. Figure 3
gives the same Hasse diagram in the realizable permutations in OGr+(2, 5). These cells
can be parameterized using the isomorphism in Theorem 4.4 and [8, Theorem 5.17 (i)].

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5
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4 5

1

2
3

4 5
1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

1

2
3

4 5

Figure 3: The face poset of OGr+(2, 5) matches that of OGr+(3, 6). See Figure 7 in [8].

We finish this section by explaining how one goes from matchings τ on [2k + 2] to
the realizable permutations in [2k + 1] i.e. permutations σ of [2k + 1] with corresponding

3The Lusztig positive part of F (k, n) is well understood but it can be shown that the Plücker positive
region F+(k, n) strictly contains the Lusztig positive region when n > 2k + 1, see [5].
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positroid cell Πσ such that Πσ ∩ OGr+(k, 2k + 1) is nonempty. Let c denote the chord
in τ attached to the vertex 2k + 2 and, starting from the vertex 2k + 2, consider the
largest sequence c = c1, c2, . . . , cr of pairwise intersecting chords of τ. Denote the 2r
vertices of these chords by i1 < · · · < i2r−1 < 2k + 2. Then the cell Πτ ∩ OGr+(k +
1, 2k + 2) is isomorphic to the cell Πσ ∩ OGr+(k, 2k + 1) where σ is the permutation of
[2k + 1] obtained by replacing the chords c1, . . . , cr with the unique cycle with support
{i1, . . . , i2r−1} and r excedances. See Figure 4 for an example.

5

6

12
3

4

7

8 9
10

11

12

13

14

15

16

5

6

12
3

4

7

8 9
10

11

12

13

14

15

τ σ

Figure 4: A matching τ of [2k + 2] and the corresponding permutation σ of [2k + 1] for
k = 7. On the left, starting vertex 16 (in blue), the chords in red are longest sequence of
chords c1, . . . , cr that intersect pairwise. On the right, vertex 16 is deleted and the red
chords turn into the unique cycle with support {1, 2, 4, 8, 11, 13, 15} and 4 excedances.

5 What goes wrong when n > 2k + 1 and k > 1?

In this section we show why positroid cells fail to induce a cell decomposition of OGr+(k, n)
as soon as n > 2k + 1 and k > 1. Let us start with the following:

Definition 5.1. For any positroid M of type (k, n) and for any pair of subsets I, J of [n]
of size k − 1 we define the following two subsets of [n]:

A±
I J(M ) =

{
ℓ ∈ [n] : Iℓ, Jℓ ∈ M and (−1)ℓ−1ϵIℓϵJℓ = ±1

}
.

We say that M is an orthopositroid if for any I, J ∈ ( [n]
k−1) we have:

A+
I J(M ) = ∅ ⇐⇒ A−

I J(M ) = ∅.

Example 5.2. Let n = 5 and consider the two following positroids:

M1 =
{
{1, 2}, {1, 4}, {2, 5}, {4, 5}

}
and M2 =

{
{1, 2}, {1, 3}, {2, 4}, {3, 4}

}
.

We then have A+
24(M1) = ∅ and A−

24(M1) = {2}. So M1 is not an orthopositroid.
One can check that M2 is an orthopositroid.
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The motivation behind this definition is that if X is a point in OGr+(k, n) and MX is
its associated positroid then MX is necessarily an orthopositroid in the sense of Defini-
tion 5.1. This is because the Plücker coordinates of X satisfy the equations (2.2).

Conjecture 5.3. For each orthopositroid M of type (k, n), there exists X in OGr+(k, n)
such that MX = M .

Since we will show that positroid cells do not give a cell decomposition of OGr+(k, n),
we refrain from elaborating on the realizability of orthopositroids for general k.

dim. permutations up to cyclic symmetry #

5

5

6

1

2

3

4

1

1

4

5

6

1

2

3

4

6

6

3

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

6 6 6 18

2

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4
5

6

1

2

3

4
5

6

1

2

3

4

5

6

1

2

3

4

6 6 6 3 2 6 29

1

5

6

1

2

3

4

5

6

1

2

3

4

6 6

5

6

1

2

3

4

6

5

6

1

2

3

4

6

5

6

1

2

3

4

6 30

0

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

6 6 3 15

Table 1: The 99 realizable permutations in OGr+(2, 6), organized by dimension.

Let us start with OGr+(2, 6). An exhaustive computation shows that, out of all
the positroids M (or decorated permutations σ) of type (2, 6), there are exactly 99 or-
thopositroids (or admissible permutations). We list them in Table 1. Let us focus on the
following two orthopositroid cells in OGr+(2, 6):
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5

6

1

2

3

4

5

6

1

2

3

4

σ τ

Let Cσ := Πσ ∩ OGr+(2, 6) and Cτ := Πτ ∩ OGr+(2, 6) be the two positroid cells in
OGr+(2, 6) corresponding to σ and τ respectively. We start by giving generic matrices
Mσ, Mτ that parametrize the points of Cσ, Cτ respectively:

Mσ =

[
1 1 0 0 −x −x
0 0 1 1 y y

]
and Mτ =

[
1 1 0 0 0 0
0 0 1 a b c

]
for x, y > 0 and a, b, c > 0 such that 1 + b2 = a2 + c2.

The closure Cτ of Cτ has the combinatorial type of a square and the closure Cσ of the
cell Cσ has the combinatorial type of a triangle. The edges of the latter are given by:

e1 =

[
1 1 0 0 b b
0 0 1 1 0 0

]
, e2 =

[
1 1 b b 0 0
0 0 0 0 1 1

]
, e3 =

[
1 1 0 0 0 0
0 0 1 1 b b

]
b ≥ 0.

The edge e1 is one of the diagonals of the "square" Cτ. So the cell Cσ glues with the cell
Cτ as in Figure 5.

Figure 5: A cartoon of the cell Cσ (in green) glued to the cell Cτ (in red).

This shows that the positroid cells are not enough to induce a CW cell decomposition
on OGr+(2, 6). In general this problem arises as soon as n > 2k + 1. This is because
whenever n > 2k + 1 we have n − 6 ≥ 2(k − 2), so we can extend a 2 × 6 matrix in
OGr+(2, 6) by a (k − 2)× (n − 6) as follows

1 1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0
0 0 1 1 0 · · · · · · · · · · · · · · · · · · 0

0 · · · · · · . . . · · · · · · · · · · · · · · · · · ·
... (0)

... · · · · · · · · · 0 1 1 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · 0 1 1 0 · · · 0

∗ ∗ ∗ ∗ ∗ ∗
(0) ∗ ∗ ∗ ∗ ∗ ∗


.

We can then realize each positroid cell in OGr+(2, 6) as some positroid cell of OGr+(k, n)
and the same problem as above arises again. This highlights the need for new combina-
torics to give a CW cell decomposition of OGr+(k, n) when n > 2k + 1 and k > 1.
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Problem 5.4. Find a cell decomposition for OGr+(k, n) when n > 2k + 1 and describe
the combinatorics behind its face poset.
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